Birzeit University

Faculty of Engineering and Technology Department of Electrical and Computer Engineering Information and Coding Theory ENEE 5304

Midterm Exam

Instructors: Dr. Wael Hashlamoun

Date: December 7, 2021

Problem 1: 22 Points

A discrete memory-less source produces one of four possible symbols every time unit with the following probabilities:

Symbol	A	В	С	D
Probability	0.25	0.2	P_{C}	P_{D}

a. Find values of P_C and P_D that minimize the source entropy.

3 b. Suppose that $P_C = 0.25$, find the amount of information, in bits, in the sequence (ABBD).

7 c. Again, suppose that $P_C = 0.25$, is it possible to find a prefix-free code with the following code-word lengths (1, 2, 2, 3) bits? Explain.

$$P_{D} = 1 - (0.25 + 0.2 + P_{C}) = 0.55 - P_{C}$$

$$A. H = Z - Rilog_{2}P_{1} = -0.25 - log_{2}0.25 - 0.2 log_{2}0.2$$

$$-P_{C} log_{2}P_{C} - lois5 \cdot P_{C}] log_{2}[0.55 - P_{C}]$$

$$-P_{C} log_{2}P_{C} - lois5 \cdot P_{C}] log_{2}[0.55 - P_{C}]$$

$$P_{C} = 0.55, P_{D} = 0$$

$$P_{C} = 0.55, P_{D} = 0$$

$$P_{C} = 0.25 - P_{D} = 0.3$$

$$P_{C} = 0.25 - P_{C} log_{2}P_{C} - lois5 \cdot P_{C} log_{2}P_{C} - lois5$$

Problem 2: 18 Points

X is a random variable, which assumes the values 1 and -1 with probabilities

$$P(X = +1) = 0.15;$$
 $P(X = -1) = 0.85.$

Y is another random variable, independent of X, which assumes the values 1 and -1 with probabilities

$$P(Y = +1) = 0.15; P(Y = -1) = 0.85.$$

- a. Find the entropy of X
- b. Define Z = X + Y. Find the entropy of Z.

$$Z = +2$$
 when $X = 1$ and $Y = +1 \Rightarrow P(X = 1 \cap Y = 1) = P(X = 1)P(X = 1)$

$$= (0.15)(0.15) = 0.0225$$

$$= (0.5)(0.15) = 0.0225$$

$$z = +2 \quad \text{when } x = 1 \text{ and } y = -1 \text{ a$$

$$z=-2$$
 when $x=-1$ and $y=-1$ an

SAME.				
		67		2
7		- And the second		7275
(2)	0.725	0.255		and the second s
14.4	AND STORY OF THE PROPERTY OF T	The state of the s	4	and the same

Problem 3: 20 Points

A discrete memory-less source produces symbols A and B with probabilities P(A) = 3/4, P(B) = 1/4. The symbols are grouped into messages of size 2 symbols and applied to a Huffman encoder.

Use Huffman's algorithm to find the code-words which are assigned to the messages AA, AB, BA, BB.

AA, AB, BA, BB.

$$\rho(A) = 0.75 / \rho(B) = 0.25$$

 $\rho(AA) = 0.75 \times 0.75 = 0.5625$
 $\rho(AB) = 0.75 \times 0.25 = 0.1875$
 $\rho(AB) = 0.25 \times 0.75 = 0.1875$
 $\rho(BA) = 0.25 \times 0.75 = 0.0625$

0
$$0.5625$$
 0.5625 0.5625 0.5625 0.5625 0.75625 0.75625 0.75625 0.757

Problem 4: 20 Points

A discrete memory-less source produces one of five possible symbols every time unit with probabilities given in the table below. Also, given in the table are code-words for the first three symbols and the lengths in bits for all five symbols.

Symbol	A	В	С	D	E
Probability	0.3	0.25	0.2	0.15	0.1
Code-word	00	01	11	C_D	CE
Number of bits	2	2	2	3	3

- a. Find the ratio of the source entropy to the average number of bits/source codeword.
- b. Find two possible code-words C_D and C_E (each with three digits) such that the code is prefix-free.

$$H = -\sum_{i} (\log_{2} e_{i} + \log_{2} e_{i} + \log_$$

Problem 5: 20 Points

The input X and the output Y of a discrete memoryless channel are related through the following joint probability mass function (both X and Y take on the values 0, 1, 2)

		Y	0	1	2
	\mathbf{X}	ĺ	0.5	0.25	0.25
17.5	0		0.25	0.125	0.125
0.25	1		0.125	0.0625	0.0625
0.25	2		0.125	0.0625	0.0625

 \mathcal{L} a. Find the entropies $\mathcal{L}(X)$ and $\mathcal{L}(Y)$.

 \mathcal{G} b. Find the joint entropy H(X;Y)

6. c. Find P(Y = 0/X = 0). This is the transition probability that Y = 0 given X = 0.

a.
$$1+cx = -0.5$$
 lead of $5-2+0.25$ lead 6.25 lead

b. HCX/Y)= -0.25 log 0.25 - 4 x 0.125 lag 0.125 + 4 x 0.0625 log 0.0625

C.
$$p(y=0/x=0) = \frac{p(x=0)}{p(x=0)}$$

$$= \frac{0.75}{0.9}$$